OnestopGate   OnestopGate
   Saturday, March 7, 2015 Login  
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum

GATE 2016 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2016 Exam Structure

GATE 2016 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mechanical Engg..
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Contact Us

Home » GATE Study Material » Mathematics » Complex Analysis » Cauchy-Riemann Equations

Cauchy-Riemann Equations

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Cauchy-Riemann Equations

Cauchy-Riemann Equations.

Recall the definition of the derivative of a function $ f$ at a point $ z_0$ :

$\displaystyle f'(z_0) = \underset{\Delta z \rightarrow 0}{\text{lim}} \frac {f(z_0 + \Delta z) - f(z_0)}{\Delta z}$    


Denote: $ z=x+iy$ , $ z_0=x_0+iy_0$ , $ \Delta z = \Delta x + i \Delta y$ and $ f(z)=u(x,y)+i\;
v(x,y)$ , where $ x$ ,$ y$ ,$ x_0$ ,$ y_0$ , $ \Delta
x$ ,$ \Delta y$ , $ u(x,y)$ and $ v(x,y)$ are real.

Figure 1: Cauchy-Riemann.
\epsfig{file=Cauchy-Riemann.eps,height=5.5cm} }\end{figure}

Suppose that $ \Delta y=0$ ; thus we have:

$\displaystyle f'(z_0)$ $\displaystyle = \underset{\Delta x \rightarrow 0}{\text{lim}} \frac {[u(x_0+\Delta x, y_0)+i v((x_0+\Delta x, y_0)]-[u(x_0, y_0)+i v((x_0, y_0)]}{\Delta x}$    
$\displaystyle \quad$ $\displaystyle =\underset{\Delta x \rightarrow 0}{\text{lim}} \frac {u(x_0+\Delt...
...ightarrow 0}{\text{lim}} \frac {v((x_0+\Delta x, y_0) - v((x_0, y_0)}{\Delta x}$    
$\displaystyle \quad$ $\displaystyle = u_x(x_0,y_0)+i v_x(x_0,y_0)$    


Suppose that $ \Delta x=0$ ; thus we have:

$\displaystyle f'(z_0)$ $\displaystyle = \underset{\Delta y \rightarrow 0}{\text{lim}} \frac {[u(x_0, y_0 + \Delta y)+i v((x_0, y_0+ \Delta y)]-[u(x_0, y_0)+i v((x_0, y_0)]}{i \Delta y}$    
$\displaystyle \quad$ $\displaystyle = \underset{\Delta y \rightarrow 0}{\text{lim}} \frac {u(x_0, y_0...
...tarrow 0}{\text{lim}} \frac {v((x_0, y_0+ \Delta y) - v((x_0, y_0)}{i \Delta y}$    
$\displaystyle \quad$ $\displaystyle = - i v_y(x_0,y_0) + v_y(x_0,y_0)$    


Hence we have the so-called Cauchy-Riemann Equations:

\frac{\partial u}{\partial x}= \frac {\partial...
...l v}{\partial x} = - \frac {\partial u}{\partial y}
which can be wriiten in the following form, with a notation frequently used in Calculus:

u_x=v_y \ u_y=-v_x

Theorem 3.3.1   If $ f(z)=u(x,y)+iv(x,y)$ is derivable at $ z_0=x_0+iy_0$ , then $ u$ and $ v$ verify the Cauchy-Riemann Equations at $ (x_0,y_0)$ .

Example 3.3.2   Let $ f(z)=z^2$ . As a polynomial function, $ f$ is derivable over the whole of $ \mathbb{C}$ .

Let us check the Cauchy-Riemann equations. Denote $ z=x+iy, \; x,y \in \mathbb{R}$ . Then we have:

$\displaystyle f(z)=(x+iy)^2=\underbrace{x^2-y^2}_{=u(x,y)}+i \; \underbrace{2xy}_{=v(x,y)}.$    


It follows that:

\begin{displaymath}\begin{cases}u_x=2x=v_y \ u_y=-2y=-2v_x \end{cases}\end{displaymath}    


at every point in the plane, i.e. Cauchy-Riemann equations hold everywhere.

Example 3.3.3   Let $ f(z)=\vert z\vert^2$ . If $ z=x+iy$ , where $ x,y$ are real numbers, then:

$\displaystyle f(z)=x^2+y^2=\underbrace{x^2+y^2}_{u(x,y)}+ i \cdot \underbrace{0}_{v(x,y)}$    


Let us check at which points the Cauchy-Riemann equations are verified. We have: $ u_x=2x$ , $ u_y=2y$ , $ v_x=0$ and $ v_y=0$ .Cauchy-Riemann equations are verified if, and only if, \begin{displaymath}\begin{cases}2x=0 \ 2y=0\end{cases}\end{displaymath} , i.e. $ x=y=0$ . The only point where $ f$ can be differentiable is the origin.

There is a kind of inverse theorem:

Theorem 3.3.4   If $ f(z)=u(x,y)+iv(x,y)$ verifies the Cauchy-Riemann Formulas at $ z_0$ and if the partial derivatives of $ u$ and $ v$ are continuous at $ (x_0,y_0)$ , the $ f$ is derivable at $ z_0$ and $ f'(z_0)=u_x(x_0,y_0)+iv_x(x_0,y_0)$ .

Example 3.3.5   Let $ f(z)=z^2$ ; the function $ f$ is derivable at any point and $ f'(z)=2z$ .

If $ z=x+iy$ , then $ f(z)=(x+iy)^2=\underbrace{x^2-y^2}_{u(x,y)} + i
\underbrace{2xy}_{v(x,y)}$ . Then: $ u_x=2x$ , $ u_y=-2y$ , $ v_x=2y$ and $ v_y=2y$ . These partial derivatives verify the C-R equations.

By that way, we have a new proof of the differentiability of $ f$ at every point.

Example 3.3.6   Let $ f(z)=z\vert z\vert^2$ , for any $ z \in \mathbb{C}$ . We work as in the previous examples:

$\displaystyle f(z)=(x+iy)(x^2+y^2) = \underbrace{(x^3+xy^2)}_{=u(x,y)}+i \underbrace{(x^2y+y^3)}_{=v(x,y)}$    


We compute the first partial derivatives:

\begin{displaymath}\begin{cases}u_x=3x^2+y^2 \ u_y = 2xy \end{cases} \qquad \text{and} \qquad \begin{cases}v_x=2xy \ v_y = x^2+3y^2 \end{cases}\end{displaymath}    


We solve Cauchy-Riemann equations:

\begin{displaymath}\begin{cases}3x^2+y^2=x^2+3y^2 \ 2xy=-2xy \end{cases} \Longleftrightarrow [ \; x=0 \quad \text{or} \quad y=o \; ]\end{displaymath}    


The subset of the plane where $ f$ can be differentiable is the union of the two coordinate axes. As the first partial derivatives of $ u$ and $ v$ are continuous at every point in the plane, $ f$ is differentiable at every point on one of the coordinate axes.


Cauchy-Riemann equations in polar form:

Instead of $ f(z)=u(x,y)+iv(x,y)$ , write $ f(z)=u(r,\theta)+iv(r,\theta)$ , where $ z=x+iy=r(\cos \theta+i \sin
\theta)$ .

\frac {\partial u}{\partial r} = \frac {1}{r} ... {1}{r}
\cdot \frac {\partial u}{\partial \theta}

Discussion Center







Email ID:

  Forgot Password?
 New User? Register!

Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers

    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages

    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2015. One Stop All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari