OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, April 28, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home GATE Study MaterialElectronics and TelecommunicationElectronics Test and Measurement � PXI technology summary

PXI technology summary

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

PXI technology summary

PXI technology summary




- a summary, overview or tutorial about the PXI technology and the PXI standard for test equipment or instrumentation used for test, automation and data acquisition applications.

The PCI eXtensions for Instrumentation (PXI) specification defines a fast, cost effective instrumentation platform developed specifically for electronics test, measurement, automation and data acquisition applications. PXI is based around the modular Eurocard mechanical packaging system which enables it to be versatile and robust.

The PXI standard was born in 1997 when it was launched by National Instruments. Now it is managed by the PXI Systems Alliance (www.pxisa.org). This is a group that has more than 60 member companies. With the open architecture, and based around the PCI specification, this has enabled PXI technology to grow very rapidly. As a result a large number of products using PXI technology are available and the system has become an industry standard.




Major features of PXI technology

The PXI system boasts many features that make it a flexible platform for many applications:

  • 33 MHz performance

  • Up to seven peripheral slots available per bus segment

  • 32 bit and 64 bit transfers

  • Peak data rates of 132 Mbytes/sec (32 bit) and 264 Mbytes/sec (64 bit) attainable

  • Plug and play capability

  • Convenient Eurocard standard boards

  • High performance connector specified

These features make PXI an ideal choice for many data acquisition, test and measurement applications.



PXI Electrical features

Although the PXI system is based around the PCI standard, this system cannot be used directly in this format. Many test equipment and data acquisition applications require accurate timing capabilities and clocks that cannot be implemented using the standard PC specifications including PCI and CompactPCI (cPCI) as well as ISA. The reason for this is that there is no reference clock. The PXI system builds on the basic PCI standard and implements these in the form of a dedicated PXI system clock and triggers. These triggers consist of the PXI trigger bus, PXI star trigger bus, and a slot to slot local bus that is available for use advanced timing and synchronisation requirements. In addition to this the specification defines a slot for the PXI system controller.



System slot

The position of what is termed a PXI system slot is defined. The location of this is on the left end of the PCI bus segment in a basic PXI system. This arrangement is a subset of the numerous possible configurations allowed by CompactPCI where it may be anywhere on the back plane. Defining a specific location for the system slot provides a number of advantages including a simplification of integration and an increase in the degree of compatibility between PXI controllers and chassis. Also the PXI specification requires that where necessary the system controller module is able to expand to the left into what are defined as controller expansion slots. By carrying this expansion to the left this prevents the system controllers from using up valuable peripheral slots.



PXI Reference Clock

In many applications it is necessary to accurately synchronise measurements or other actions to a single clock. The PXI standard allows for this by proving a 10 MHz TTL reference clock. The basic accuracy of the clock not mandated by the standard and is dependent upon the actual oscillator fitted to the chassis. Typically it will be better than 25 ppm. However the standard does specify that the track lengths from the oscillator shall be the same so that the skew between the edges reaching the different cards is less than 1 pS.



Trigger bus

There are many instances where a trigger is required, and the trigger bus can be used for many of these applications. The PXI standard defines a bus consisting of eight separate trigger lines. They enable synchronisation and timing signals to be passed from one module to another where one module may act as a master passing timing or synchronisation to the others that may act as slaves.

The trigger lines allow triggers, clocks, or handshaking signals to be transferred, although it is recommended that clock signals above 20 MHz are not transferred along this bus because of the signal degradation that may be suffered. Nevertheless the trigger bus is particularly useful for most applications.



Star trigger bus

The star trigger bus is a PXI bus that adopts a different approach to that of the ordinary trigger bus. It is used for applications where a high speed trigger with low levels of delay and skew are required. To achieve this, an independent line is routed from what is termed the star trigger slot (slot 2 in the PXI chassis) to each of the other slots in a star configuration. Again the line lengths are matched to ensure that the propagation delays are matched to within 1 pS.



PXI Local bus

A third form of PXI bus is known as the local bus. This receives its name because it is a daisy chain bus that connects one slot with the adjacent slots. The bus is 13 lines wide, and allows both digital and analogue (up to 42 volts) signals to be passed over it. In this way signals that may be required to be transferred within the chassis can be accommodated.



PXI software

An essential element of virtually every piece of electronics equipment these days is the software, and the PXI bus is no exception. By defining standards required, it ensures interoperability between all PXI modules, regardless of the manufacturer.

The PXI standard defines a common operating system framework and the relevant interfaces for software drivers for the peripherals. This is based around the requirements of Microsoft Windows. This approach not only does this allow for communication between the controller, and modules but also many industry standard software packages.

Most PXI instrument modules are register-based products. They use software drivers that are hosted on the central controller PC to configure in the way that they are needed for the particular application in question. By adopting this technique it enables them to provide considerably more flexibility as the controller computer is able access the instrument directly and this simplifies the embedded software in the modules while enabling a high level of flexibility to be obtained. The open architecture used for PXI technology allows hardware to be reconfigured to provide new facilities and features that are difficult to emulate in comparable bench instruments.



Mechanical aspects

The mechanical design of the PXI system is equally important as the electrical design and standards. PXI technology is based around the Eurocard packaging system. This provides a number of advantages including a system that is already established. Furthermore the connectors that are used are the IEC-1076 style. The pins are on a 2 mm pitch giving a very dense connection system. In addition to this they are impedance matched to provide the required performance at high frequencies.

The PXI system supports the two sizes. The 3U standard defines modules that are 100 by 160 mm (3.94 by 6.3 in.). These have two interface connectors. One carries the signals required for the 32-bit PCI local bus and the other carries the signals for 64-bit PCI transfers and the signals for implementing PXI electrical features. The 6U form factor defines modules that are 233.35 by 160 mm (9.19 by 6.3 in.). These may carry up to two additional connectors for future expansion of the PXI specification. The larger card size also allows for a additional circuitry that may be required for some instruments.



PXI summary

With these specifications set down, PXI technology is able to provide a resilient test and data acquisition approach that can meet the needs of a large number of applications within the electronics industry. PXI technology is widely used for general test equipment applications, as well as for test, automation and data acquisition. It is possibly for use within data acquisition systems that it has gained most of its use. For these data acquisition systems it enables a compact flexible system to be created at a reasonable cost. Accordingly PXI has become one of the leading standards for test, measurement and automation.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari