PROBLEM SHEET 3

Alternating current

1. A wire frame of area $S=0.1 \mathrm{~m}^{2}$ is rotated with frequency $f=100 \mathrm{~Hz}$ in magnetic field of induction $B=2 \mathrm{~T}$. For the induced alternating EMF, determine:
a) Angular frequency ω;
b) Period T;
c) Amplitude \mathcal{E}_{m};
d) Peak-to-peak amplitude $\varepsilon_{p p}$;
e) R.m.s. amplitude \mathcal{E}.
2. A 100Ω resistor is connected to a power source of 100 V a.c. Determine:
a) Effective current;
b) Amplitudes of current and voltage;
c) Peak-to-peak amplitudes of current and voltage.
3. For a power source of 100 V at 50 Hz , the instantaneous value of voltage at the initial moment of time $t=0$ is zero. Determine the instantaneous values of voltage and phase after:
a) $1 / 12$ of a cycle; b) $1 / 8$ of a cycle; c) $1 / 6$ of a cycle; d) $1 / 4$ of a cycle;
e) $1 / 3$ of a cycle; f) $3 / 8$ of a cycle; g) $5 / 12$ of a cycle; h) $1 / 2$ of a cycle.

Express the phase both in radians and in degrees.
4. A 75Ω resistor is connected to a power source of 150 V at 50 Hz . At the initial moment of time $t=0$, the instantaneous value of the voltage was zero, and that of the current was 2 A . Determine:
a) Phase shift φ between voltage and current;
b) Time interval Δt which corresponds to this phase shift;
c) Power factor;
d) Apparent power;
e) Active power consumed in the resistor.
5. ASSIGNMENT. A 100Ω resistor is connected to a power source of 100 V at 50 Hz . At the initial moment of time $t=0$, the instantaneous value of the voltage was zero, and that of the current was 0.7 A . Determine:
a) Phase shift φ between voltage and current;
b) Time interval Δt which corresponds to this phase shift;
c) Power factor;
d) Apparent power;
e) Active power consumed in the resistor.
6. (*) For a power source of 100 V a.c., determine the average value of voltage over one halfcycle. For this, you will need to take integral of voltage over a half-cycle. See more details in the textbook.

