Module 57022

PROBLEM SHEET 3

Alternating current

- 1. A wire frame of area $S = 0.1 \text{ m}^2$ is rotated with frequency f = 100 Hz in magnetic field of induction B = 2 T. For the induced alternating EMF, determine:
 - a) Angular frequency ω ;
 - b) Period *T*;
 - c) Amplitude \mathcal{E}_m ;
 - d) Peak-to-peak amplitude \mathcal{E}_{pp} ;
 - e) R.m.s. amplitude \mathcal{E} .
- 2. A 100 Ω resistor is connected to a power source of 100 V a.c. Determine:
 - a) Effective current;
 - b) Amplitudes of current and voltage;
 - c) Peak-to-peak amplitudes of current and voltage.
- 3. For a power source of 100 V at 50 Hz, the instantaneous value of voltage at the initial moment of time t = 0 is zero. Determine the instantaneous values of voltage and phase after:
 - a) 1/12 of a cycle; b) 1/8 of a cycle; c) 1/6 of a cycle; d) 1/4 of a cycle;
 - e) 1/3 of a cycle; f) 3/8 of a cycle; g) 5/12 of a cycle; h) 1/2 of a cycle.

Express the phase both in radians and in degrees.

- 4. A 75 Ω resistor is connected to a power source of 150 V at 50 Hz. At the initial moment of time t = 0, the instantaneous value of the voltage was zero, and that of the current was 2 A. Determine:
 - a) Phase shift φ between voltage and current;
 - b) Time interval Δt which corresponds to this phase shift;
 - c) Power factor;
 - d) Apparent power;
 - e) Active power consumed in the resistor.
- 5. ASSIGNMENT. A 100 Ω resistor is connected to a power source of 100 V at 50 Hz. At the initial moment of time t = 0, the instantaneous value of the voltage was zero, and that of the current was 0.7 A. Determine:
 - a) Phase shift φ between voltage and current;
 - b) Time interval Δt which corresponds to this phase shift;
 - c) Power factor;
 - d) Apparent power;
 - e) Active power consumed in the resistor.
- 6. (*) For a power source of 100 V a.c., determine the average value of voltage over one halfcycle. For this, you will need to take integral of voltage over a half-cycle. See more details in the textbook.