PROBLEM SHEET 4

Elementary a.c. circuits

1. Determine capacitive reactance X_{C} for a capacitor $C=10 \mathrm{nF}$ at frequencies:
a) $f=50 \mathrm{~Hz}$; b) $f=1000 \mathrm{~Hz}$; c) $f=20 \mathrm{kHz}$; d) $f=1 \mathrm{MHz}$.
2. Determine capacitive reactance X_{C} at frequency $f=4 \mathrm{kHz}$ for a capacitor:
a) $C=1000 \mathrm{pF}$; b) $C=20 \mathrm{nF}$; c) $C=0.8 \mu \mathrm{~F}$; d) $C=50 \mu \mathrm{~F}$.
3. Determine inductive reactance X_{L} for a coil $L=0.2 \mathrm{H}$ at frequencies:
a) $f=50 \mathrm{~Hz}$; b) $f=1000 \mathrm{~Hz}$; c) $f=20 \mathrm{kHz}$; d) $f=1 \mathrm{MHz}$.
4. Determine inductive reactance X_{L} at frequency $f=4 \mathrm{kHz}$ for a coil:
a) $L=10 \mathrm{mH}$; b) $L=300 \mathrm{mH}$; c) $L=2.5 \mathrm{H}$.
5. A circuit consists of a resistor R, a capacitor C and a coil L connected in series. Determine capacitive reactance X_{C}, inductive reactance X_{L}, total reactance X, impedance Z of the circuit and phase difference φ between voltage and current if:
a) $R=800 \Omega, C=2 \mu \mathrm{~F}, L=0.8 \mathrm{H}$ and angular frequency $\omega=1260 \mathrm{rad} / \mathrm{sec}$;
b) $R=300 \Omega, C=1.5 \mu \mathrm{~F}, L=0.3 \mathrm{H}$ and frequency $f=120 \mathrm{~Hz}$.
