3. ALTERNATING CURRENT

Main things to learn

- Generation of alternating EMF
- Waveform and parameters
- Average and root-mean-square values
- Phase and phase difference
- Power in a.c. circuits

Source of alternating EMF

$$
e=\varepsilon_{m} \sin \omega t
$$

ω - angular frequency (see later)
e - instantaneous value of the EMF
e is a function of time $e(t)$
ε_{m} - amplitude of alternating EMF

General rule about notations

Instantaneous values are denoted by lowercase letters: e, u, i Amplitudes are denoted by uppercase letters: $\mathcal{\varepsilon}, \cup, I$

Question:
Why $\sin \omega t$, not any other periodic function?

GENERATION OF ALTERNATING EMF

Principle of a generator
A frame of area S is rotated
with angular speed ω
in magnetic field of induction B
θ - angle between the induction and the normal to the plane

$$
\theta=\omega t
$$

Magnetic field Φ flux through the frame is

$$
\Phi=B S \cos \theta=B S \cos \omega t
$$

EMF of the electromagnetic induction
$e_{i}=-\frac{d \Phi}{d t}=\omega B S \sin \omega t=\varepsilon_{m} \sin \omega t$
Alternating EMF is directly related to the circular motion

Definitions

Waveform - varying voltage or current as a function of time
Cycle - each repetition recurring at equal intervals

Period T - duration of one cycle

Frequency f-- number of cycles in one second (hertz -Hz)

$$
f=1 / T
$$

The circular motion and periodic processes are described by the same function

$$
e=\varepsilon_{m} \sin \omega t
$$

ω - angular speed for the circular motion or angular frequency for a periodic process (radian / sec)

$$
\begin{aligned}
& f=\omega / 2 \pi \\
& T=2 \pi / \omega
\end{aligned}
$$

PARAMETERS OF ALTERNATING CURRENT

Parameters used to describe alternating quantities:

EMF, voltage, current
ε_{m} - amplitude (maximum value)
ε_{p-p} - peak-to-peak value

$$
\varepsilon_{p-p}=2 \varepsilon_{m}
$$

Also, some average values are required to describe alternating current

However

Average value of $e=\varepsilon_{m} \sin \omega t$ equals zero!
Average of the absolute value of e (average over a half-period) is useless
The effective (root-mean-square - r.m.s.) value of voltage or current is typically used

ROOT-MEAN-SQUARE VALUES

Root-mean-square (r.m.s.), or effective value of alternating current or voltage: equivalent value of direct current or voltage which would produce the same heating effect in the same resistor

$$
\begin{gathered}
e=\varepsilon_{m} \sin \omega t \quad ; \quad u_{\mathrm{AB}}=U_{m} \sin \omega t \\
i=\frac{U_{m}}{R} \sin \omega t=I_{m} \sin \omega t
\end{gathered}
$$

Heating power

$$
P=i \cdot u=I_{m} U_{m} \sin ^{2} \omega t=I_{m}{ }^{2} R\left(\frac{1}{2}-\frac{\cos 2 \omega t}{2}\right)
$$

Average value of power: $\quad P_{a v}=1 / 2 I_{m}{ }^{2} R=I_{r m s}^{2} R$
$\therefore \quad I=I_{r m s}=\frac{I_{m}}{\sqrt{2}}=0.707 \cdot I_{m} ; U=U_{r m s}=\frac{U_{m}}{\sqrt{2}}=0.707 \cdot U_{m}$
If not said otherwise, values of current or voltage are implied to be root-mean-square (effective) values.
Notations of amplitudes without subscripts are reserved for root-mean-square values

PHASE AND PHASE DIFFERENCE

Two alternating quantities can have the same frequency,

The argument of the sine function $(\omega t+\varphi)$ is called phase. It is equivalent to the full rotation angle for the circular motion.
The difference φ between the phases of two alternating quantities - phase difference

If the current cycle starts before the voltage cycle ($\varphi>0$) current leads voltage, or voltage lags current

If the current cycle starts after the voltage cycle ($\varphi<0$) current lags voltage, or voltage leads current
Phase is a function of time while phase difference is constant

POWER IN A.C. CIRCUITS

If current and voltage in a circuit are in phase,

$$
\begin{gathered}
P=i \cdot u=I_{m} U_{m} \sin ^{2} \omega t=I_{m} U_{m}\left(\frac{1}{2}-\frac{\cos 2 \omega t}{2}\right) \\
P_{a v}=\frac{I_{m} U_{m}}{2}=I \cdot U \quad \text { (r.m.s. values) }
\end{gathered}
$$

If they are not in phase,

$$
P=i \cdot u=I_{m} U_{m} \sin \omega t \cdot \sin (\omega t+\varphi)=I_{m} U_{m} \frac{\cos \varphi-\cos (2 \omega t+\varphi)}{2}
$$

$$
P_{a v}=\frac{I_{m} U_{m} \cos \varphi}{2}=I \cdot U \cdot \cos \varphi-\text { active power }[\text { watt }]
$$

$$
S=I \cdot U \quad \text { - apparent (maximum possible) power [volt ampere] }
$$

The active power may be much smaller than the apparent power

$$
\cos \varphi=\frac{\text { active power }}{\text { apparent power }} \quad-\text { power factor } \leq 1
$$

IMPORTANCE OF THE PHASE DIFFERENCE

A major problem in the analysis of a.c. circuits is due to the effect of capacitors and inductors which results in phase differences

For example, we need to add two voltages U_{1} and u_{2} If the voltages $U_{1}=U_{1} \sin \omega t$ and $u_{2}=U_{2} \sin \omega t$ are in phase (their phase difference φ is zero), we need to add amplitudes

If they are not in phase $(\varphi \neq 0)$, we need to add both amplitudes and phases

$$
\begin{gathered}
u_{1}=U_{1} \sin \omega t ; u_{2}=U_{2} \sin (\omega t+\varphi) \\
u_{1}+U_{2}=U_{1} \sin \omega t+U_{2} \sin (\omega t+\varphi)= \\
=\left(U_{1}+U_{2} \cos \varphi\right) \cdot \sin \omega t+U_{2} \sin \varphi \cdot \cos \omega t= \\
=\sqrt{\left(U_{1}+U_{2} \cos \varphi\right)^{2}+\left(U_{2} \sin \varphi\right)^{2}} \sin (\omega t+\beta) \\
\beta=\tan ^{-1}\left(\frac{U_{2} \sin \varphi}{U_{1}+U_{2} \cos \varphi}\right) \\
\text { New methods of analysis are required }
\end{gathered}
$$

