5. PHASORS

Main things to learn - Phasor representation

- Phasor diagrams for resistive, capacitive and inductive circuits
- Addition and subtraction of phasors
- Application to circuits in-series

$$
\begin{aligned}
& u=u_{C}+u_{R}+u_{L}= \\
& =I_{m} Z \sin (\omega t+\varphi) \quad \text { where }
\end{aligned}
$$

$$
\varphi=\tan ^{-1}\left(\frac{\omega L-\frac{1}{\omega C}}{R}\right)
$$

$$
Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
$$

An arrow (a vector) of length U starts from the beginning of the $X-Y$ coordinate plane.
φ - angle between the arrow and the X-axis Coordinates of the end of the arrow are:

$$
x=U \cos \varphi \quad ; y=U \sin \varphi
$$

If the arrow rotates anti-clockwise with a constant angular speed ω, the angle θ between the arrow and the X-axis is

$$
\theta=\omega t+\varphi
$$

Therefore, the coordinates of the end of the arrow are:

$$
x=U \cos (\omega t+\varphi) ; \quad y=U \sin (\omega t+\varphi)
$$

These equations are identical to the equations for the alternating current
φ is the initial phase at $t=0$

PHASOR REPRESENTATION

Basis: similarity between rotational motion and periodic processes

$$
u=U_{m} \sin (\omega t+\varphi)
$$

Phasor for the quantity u is a vector which has

- Length $0.707^{*} U_{m}$
- Angle φ between the vector and the X-axis

We do not represent the term ωt because it is the same for all quantities.
Of importance is the phase difference
between U and a reference quantity a for which the initial phase $\varphi=0$

$$
a=A_{m} \sin \omega t
$$

Notation for phasors

- In textbooks - typically bold like a
- In these handouts - underlined like \boldsymbol{a}
- Length of the phasor is the r.m.s. value, not the amplitude - this is why $0.707^{*} U_{m}$

PHASOR DIAGRAM FOR A RESISTOR

$$
u_{\mathrm{AB}}=I_{m} R \sin \omega t
$$

Phase difference between voltage and current is zero

Current in the resistor is taken as reference

PHASOR DIAGRAMS FOR A CAPACITOR AND AN INDUCTOR

$$
\begin{gathered}
\substack{\mathrm{A} \\
\mathrm{O} \\
i=I_{m} \sin \omega t \\
u_{\mathrm{AB}}=I_{m} X_{C} \sin (\omega t-\pi / 2)}
\end{gathered}
$$

$$
\mathrm{A}_{\mathrm{o}}^{\mathrm{A}} \mathrm{~m}^{L} \mathrm{~B}
$$

$$
\begin{gathered}
i=I_{m} \sin \omega t \\
u_{\mathrm{AB}}=I_{m} X_{L} \sin (\omega t+\pi / 2)
\end{gathered}
$$

Phase difference between voltage and current is $\pi / 2$ (quarter-cycle)
Voltage lags current
Voltage leads current

ADDITION OF PHASORS

Why do we need phasors?
We want to add two alternating voltages

$$
\begin{aligned}
& u_{1}=U_{1 m} \sin \left(\omega t+\varphi_{1}\right) \\
& u_{2}=U_{2 m} \sin \left(\omega t+\varphi_{2}\right)
\end{aligned}
$$

Their sum $u=U_{1}+U_{2}$ can be represented by a phasor $\underline{\boldsymbol{u}}$ which is a vector (phasor) sum of the phasors $\underline{\boldsymbol{u}}_{\mathbf{1}}$ and $\underline{\boldsymbol{u}}_{\mathbf{2}}$

The amplitude U and the phase φ for the phasor $\underline{\boldsymbol{u}}$ can be found geometrically

RESISTANCE AND INDUCTANCE IN SERIES

$$
\begin{gathered}
U_{R}=I R: U_{R} \text { in-phase with } I \\
U_{L}=I X_{L}: U_{L} \text { leads } I \text { by } \pi / 2 \\
X_{L}=\omega L
\end{gathered}
$$

Current is taken as reference because it is the same for both elements
The total voltage u leads current i

$$
\begin{gathered}
\varphi=\tan ^{-1} \frac{U_{L}}{U_{R}}=\tan ^{-1} \frac{X_{L}}{R}=\tan ^{-1}\left(\frac{\text { reactance }}{\text { resistance }}\right) \\
\text { Amplitude: } \\
U=\sqrt{U_{L}^{2}+U_{R}^{2}}=I \sqrt{X_{L}^{2}+R^{2}}=I Z \\
\text { Impedance: } \\
Z=\sqrt{X_{L}^{2}+R^{2}}=\sqrt{(\omega L)^{2}+R^{2}} \\
\text { Impedance }=\sqrt{\text { Resistance }^{2}+\text { Reactance }^{2}}
\end{gathered}
$$

Current is taken as reference because it is the same for both elements
The total voltage u lags current i

HOW TO SOLVE PROBLEMS: LCR CIRCUIT

A resistor of resistance $R=800 \Omega$, a capacitor of capacitance $C=1 \mu \mathrm{~F}$ and a coil of inductance $L=0.1 \mathrm{H}$ are connected in series to a voltage source 100 V , 200 Hz . Determine the impedance of the circuit, the current and the phase difference between the voltage and the current.

1. Draw a circuit diagram
2. Insert all the known quantities
3. Determine the reactances
4. Choose reference quantity
5. Plot the phasor diagram (approximately to scale)
6. Determine the impedance
7. Determine the current
8. Determine the phase

PROBLEM SOLUTION

6) $Z=\sqrt{(796-126)^{2}+800^{2}}=1044 \Omega$
7) $I=100 / 1044=96 \mathrm{~mA}$
8) $\varphi=-\tan ^{-1}\left(\frac{796-126}{800}\right)=-40^{\circ}$

Voltage lags current by 40°
Current leads voltage by 40°

