6. PARALLEL A.C. CIRCUITS

Main things to learn

- Analysis of parallel a.c. circuits
- Active and reactive current
- Admittance and susceptance
- Power factor

Common way of connecting loads to the power supply is in parallel

$C R$ or $L R$ circuits in parallel. How to analyse them using phasor diagrams?
For series circuits, it was reasonable to take current as a reference quantity However, in parallel circuits the voltage is the same across each element

Therefore, voltage is the most reasonable choice for reference It is common to use the voltage from the power supply as reference

PHASOR DIAGRAM FOR A CR CIRCUIT IN PARALLEL

$I_{R}=U / R: i_{R}$ in-phase with u $I_{C}=U / X_{C}: i_{C}$ leads u by $\pi / 2, X_{C}=1 / \omega C$

Phase:
The total current i leads voltage u (like for a series $C R$ circuit)

$$
\underline{i}=\underline{i}_{R}+\underline{i}_{c}
$$

Voltage \boldsymbol{u} - reference

$$
\varphi=\tan ^{-1} \frac{I_{C}}{I_{R}}=\tan ^{-1} \frac{R}{X_{C}}=\tan ^{-1}\left(\frac{\text { resistance }}{\text { reactance }}\right)
$$

Amplitude:

$$
I=\sqrt{I_{C}{ }^{2}+I_{R}{ }^{2}}=U \sqrt{\frac{1}{X_{C}{ }^{2}}+\frac{1}{R^{2}}}=\frac{U}{Z}
$$

Impedance:

$$
\frac{1}{Z}=\sqrt{\frac{1}{X_{C}{ }^{2}}+\frac{1}{R^{2}}}=\sqrt{(\omega C)^{2}+\frac{1}{R^{2}}}
$$

PHASOR DIAGRAM FOR AN LR CIRCUIT IN PARALLEL

$I_{R}=U / R: \quad i_{R}$ in - phase with u
$I_{C}=U / x_{L}: i_{L}$ lags u by $\pi / 2, x_{L}=\omega L$
Phase:
The total current i lags voltage u (like for a series $L R$ circuit)

$$
\frac{\dot{i}}{\underline{i}}=\dot{i}_{R}+\underline{i}_{L} \quad \varphi=-\tan ^{-1} \frac{I_{L}}{I_{R}}=-\tan ^{-1} \frac{R}{X_{L}}=-\tan ^{-1}\left(\frac{\text { resistance }}{\text { reactance }}\right)
$$

Amplitude:

$$
I=\sqrt{I_{L}{ }^{2}+I_{R}{ }^{2}}=U \sqrt{\frac{1}{X_{L}{ }^{2}}+\frac{1}{R^{2}}}=\frac{U}{Z}
$$

Impedance:

$$
\frac{1}{Z}=\sqrt{\frac{1}{X_{L}{ }^{2}}+\frac{1}{R^{2}}}=\sqrt{\left(\frac{1}{\omega L}\right)^{2}+\frac{1}{R^{2}}}
$$

SUMMARY OF FORMULAE

D.C.

$$
\begin{array}{ll}
R=R_{1}+R_{2} & Z=\sqrt{R^{2}+X^{2}} \\
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} & \frac{1}{Z}=\sqrt{\frac{1}{X^{2}}+\frac{1}{R^{2}}}
\end{array}
$$

EXAMPLE

$$
\begin{gathered}
\text { A.C. } \\
R=30 \Omega \quad X=60 \Omega \\
\text { in parallel } \\
Z=26.8 \Omega \\
(10 \% \text { less than } R) \\
\hline
\end{gathered}
$$

EXAMPLE: LCR CIRCUIT IN PARALLEL

ACTIVE AND REACTIVE CURRENTS

II REACTIVE

Current in any circuit can be represented as a sum of two components:

1) in-phase; 2) at phase difference of 90° to voltage

In-phase - active, or power component

$$
I_{\text {active }}=I \cos \varphi
$$

At 90° to voltage - reactive, or quadrature component $I_{\text {reactive }}=I \sin \varphi$

$$
I^{2}=\left(I_{\text {active }}\right)^{2}+\left(I_{\text {reactive }}\right)^{2}
$$

RELATION TO ACTIVE POWER: $\quad P_{\text {active }}=I U \cos \varphi=I_{\text {active }} U$

$$
\text { POWER FACTOR }=\cos \varphi=\frac{l_{\text {active }}}{\sqrt{\left(I_{\text {active }}\right)^{2}+\left(I_{\text {reactive }}\right)^{2}}}
$$

Resistors are active, while capacitors and coils are reactive circuit elements
For purely reactive (capacitive or inductive) circuits, power factor = 0

ADMITTANCE, CONDUCTANCE AND SUSCEPTANCE

For D.C. circuits: R-resistance, $G=1 / R$ - D.C. conductance
For two resistors in parallel: $\quad \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \therefore \quad G=G_{1}+G_{2}$
For A.C. circuits, an equivalent quantity is called admittance Y

$$
\text { Admittance }=\frac{1}{\text { Impedance }}: Y=\frac{1}{Z}=\frac{I}{U} \quad \text { Units }- \text { siemens [S] }
$$

A.C. conductance G is an active component of admittance

A reactive component of admittance is called susceptance (notation - B)

$$
G=\frac{I_{\text {active }}}{U} \quad B=\frac{I_{\text {reactive }}}{U} \quad \therefore \quad Y=\sqrt{G^{2}+B^{2}}
$$

NOTE

G, B and Y may be conductance, susceptance and admittance, respectively, of circuit elements or of the whole circuit

ADMITTANCE, CONDUCTANCE AND SUSCEPTANCE IMPEDANCE, RESISTANCE AND REACTANCE: THEIR RELATION

$$
\begin{gathered}
G=\frac{I_{\text {active }}}{U}=\frac{I_{\text {active }}}{I} \frac{I}{U}=\frac{R}{Z} \cdot \frac{1}{Z}=\frac{R}{Z^{2}} \\
B=\frac{I_{\text {reactive }}}{U}=\frac{I_{\text {reactive }}}{I} \frac{I}{U}=\frac{X}{Z} \cdot \frac{1}{Z}=\frac{X}{Z^{2}}
\end{gathered}
$$

Note that $G=1 / R$ only for purely resistive circuits

EXAMPLES

If a resistor R_{0} is connected in series with a reactive element X, resistance of the circuit R is equal to $R_{0}: \quad R=R_{0}$
However, if a resistor R_{0} is connected in parallel with a reactive element X, resistance of the circuit R is not equal to $R_{0}: \quad R \neq R_{0}$
In this case, conductance of the circuit G is equal to conductance of the resistor $G_{0}: \quad G=G_{0}=1 / R_{0}$

EXAMPLE: MORE COMPLICATED CIRCUIT

Known parameters: e, frequency, R_{1}, R_{2}, L, C.
Determine: current, phase angle
STEP 1
Analysis of the $R_{1} C$ segment

Reference - current $\boldsymbol{i}_{\mathbf{1}}$

STEP 2

Analysis of the $R_{2} L$ segment

L
Reference - current $\boldsymbol{i}_{\mathbf{2}}$

STEP 3

Analysis of the whole circuit
Reference - voltage $\boldsymbol{u}_{1}=\boldsymbol{u}_{2}=\mathbf{e}$

For more or less complicated circuits, the method of phasor diagrams becomes rather cumbersome

Anything more efficient?
Method of complex notations (next lecture)

