7. COMPLEX NOTATIONS

Main things to learn

- Complex numbers: modulus and phase
- Relation of complex numbers and phasor diagrams
- Complex impedance and admittance
- Application to problems

$$
\text { Imaginary unit: } j=\sqrt{-1} \quad \therefore j \times j=-1
$$

Complex number $z=a+b j: a$ - real part, b-imaginary part

Operations with complex numbers

$$
\text { Addition : }(a+b j)+(c+d j)=(a+c)+(b+d) j
$$

$$
\text { Subtraction: }(a+b j)-(c+d j)=(a-c)+(b-d) j
$$

Multiplication: $(a+b j) \times(c+d j)=(a c-b d)+(b c+a d) j$
Division : $\frac{a+b j}{c+d j}=\frac{(a+b j) \times(c-d j)}{(c+d j) \times(c-d j)}=\frac{(a c+b d)+(b c-a d) j}{c^{2}+d^{2}}$
$c-d j$ is a complex conjugate to $c+d j$

MODULUS AND PHASE OF A COMPLEX NUMBER

A complex number $z=x+y j$ actually consists of two real numbers x and y
Therefore, it can be presented as a vector Z in the $x-y$ coordinate plane

$|z|$ is the modulus (amplitude) and φ is the phase of the complex number Z
Complex numbers can account for both amplitude and phase Therefore, the complex numbers can be used to describe quantities which have both amplitude and phase like alternating voltages, currents etc.

COMPLEX NUMBERS AND PHASOR DIAGRAMS

Complex numbers and phasors are described in a very similar way

Addition of phasors:

$$
\underline{\boldsymbol{u}}=\underline{\boldsymbol{u}}_{1}+\underline{u}_{2}
$$

Addition of complex numbers

$$
x+y j=(a+b j)+(c+d j)
$$

The complex numbers can be used to describe alternating quantities which have both amplitude and phase in the same way as phasors

Phasors can be represented by complex numbers

COMPLEX NOTATIONS FOR VOLTAGE

Assume that voltage leads current by the phase angle φ

Phasor-diagram representation
Current i - reference
Voltage U - at the angle φ to the X-axis
How can we represent them by complex numbers?

Current I can be represented as a real number (no y-component)
Voltage U can be represented as a complex number with the real part $U_{1}=U \cos \varphi$ and the imaginary part $U_{2}=U \sin \varphi$
i.e. as a complex number with the amplitude $|U|$ and the phase φ

$$
U=U_{1}+U_{2} j=|U| \times(\cos \varphi+j \times \sin \varphi)=|U| \cdot e^{j \varphi}
$$

Note that the measured voltage is always a real number. It is represented as a complex number to take the phase into account

COMPLEX IMPEDANCE

Ohm's law for an a.c. circuit: $U=I Z$ where Z-impedance,

$$
U \text { - complex voltage, I - complex current }
$$

To satisfy the Ohm's law in complex notations, \mathbf{Z} should be complex
The phase difference between voltage and current appears due to reactive elements in the circuit - capacitors and inductors

The in-phase component of voltage U_{1} is due to resistance $R: U_{1}=U_{R}=I R$
The quadrature component of voltage U_{2} is due to reactance $X: U_{2}=U_{X}=I X$
Therefore, to satisfy the Ohm's law in complex notations, we should take the impedance Z as

$$
Z=R+X j
$$

Resistance is the real part of impedance of the circuit Reactance is the imaginary part of impedance of the circuit

HOW TO USE THE METHOD OF COMPLEX NOTATIONS

To each element of a circuit with resistance R and reactance X we attribute a complex impedance $Z=R+X j$

After that, an a.c. circuit is analysed in the same way as a d.c. circuit with the use of the complex numbers

$$
\text { Resitance : } X=0 \quad \therefore \quad Z_{R}=R
$$

Inductance : $R=0, X_{L}=\omega L \quad \therefore \quad Z_{L}=j \omega L$
Capacitance : $R=0, X_{C}=-\frac{1}{\omega C} \therefore Z_{C}=-\frac{j}{\omega C}=\frac{1}{j \omega C}$

EXAMPLES

$L R$ in series : $Z=Z_{R}+Z_{L}=R+j \omega L,|Z|=\sqrt{(\omega L)^{2}+R^{2}}$
$C R$ in series : $Z=Z_{R}+Z_{C}=R+\frac{1}{j \omega C},|Z|=\sqrt{\left(\frac{1}{\omega C}\right)^{2}+R^{2}}$

ADMITTANCE, CONDUCTANCE AND SUSCEPTANCE

Admittance Y - equivalent of conductance for a.c. circuits: $Y=\frac{1}{Z}$
Conductance G - active component of admittance
Susceptance B - reactive component of admittance

IN COMPLEX NOTATIONS

$$
Y=G+B j
$$

Conductance is the real part of admittance Susceptance is the imaginary part of admittance

$$
\begin{gathered}
Z=R+X j \quad \therefore Y=\frac{1}{Z}=\frac{1}{R+X j}=\frac{R-X j}{R^{2}+X^{2}}=\frac{R-X j}{\left|Z^{2}\right|} \\
G=\frac{R}{\left|Z^{2}\right|} \quad \text { and } \quad B=-\frac{X}{\left|Z^{2}\right|}
\end{gathered}
$$

For parallel circuits (elements 1 and 2 in parallel)

$$
\frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}} \quad \therefore \quad Y=Y_{1}+Y_{2}
$$

EXAMPLE

A resistance R_{0} and a reactance X_{0} are connected in parallel.
Determine resistance R and reactance X of the circuit.

$$
\begin{array}{r}
G_{0}=\frac{1}{R_{0}} \quad \text { and } \quad B_{0}=-\frac{1}{X_{0}} \\
Y=G_{0}+j B_{0}=\frac{1}{R_{0}}+\frac{1}{j x_{0}}=\frac{1}{R_{0}}-\frac{j}{X_{0}} \\
Z=\frac{1}{Y}=\frac{1}{\frac{1}{R_{0}}-\frac{j}{X_{0}}}=\frac{R_{0} x_{0}}{X_{0}-j R_{0}}= \\
=\frac{R_{0} x_{0}\left(X_{0}+j R_{0}\right)}{x_{0}{ }^{2}+R_{0}{ }^{2}}=R_{0} \frac{x_{0}{ }^{2}}{x_{0}{ }^{2}+R_{0}{ }^{2}}+j x_{0} \frac{R_{0}{ }^{2}}{x_{0}{ }^{2}+R_{0}{ }^{2}} \\
R=R_{0} \frac{X_{0}{ }^{2}}{X_{0}{ }^{2}+R_{0}{ }^{2}} \quad \text { and } \quad x=x_{0} \frac{R_{0}{ }^{2}}{X_{0}{ }^{2}+R_{0}{ }^{2}}
\end{array}
$$

HOW TO SOLVE PROBLEMS: LCR CIRCUIT

A resistor of resistance $R=800 \Omega$, a capacitor of capacitance $C=1 \mu \mathrm{~F}$ and a coil of inductance $L=0.1 \mathrm{H}$ are connected in series to a voltage source 100 V , 200 Hz . Determine the impedance of the circuit, the current and the phase difference between the voltage and the current.

1. Draw a circuit diagram and insert all the known quantities
2. Determine the complex impedances of all elements. You may wish to replot the circuit to show all elements as resistors with complex impedances.
3. Determine the complex impedance of the circuit using the rules for d.c. circuits. Present it in the form $Z=R+X j$
4. Determine the modulus of the impedance $|Z|$ and the current

$$
I=U /|Z|
$$

5. Determine the phase of the complex impedance $\varphi=\tan ^{-1}(\mathrm{X} / \mathrm{R})$ which is the phase shift between voltage and current. Note the sign!

PROBLEM SOLUTION

2) $Z_{R}=800 \Omega ; Z_{L}=(2 \pi \times 200 \times 0.1) j=126 j \Omega$;

$$
Z_{C}=-1 /\left(2 \pi \times 200 \times 10^{-6}\right) j=-796 j \Omega
$$

3) $Z=800+(126-796) j=800-670 j[\Omega]$
4) $|Z|=\sqrt{670^{2}+800^{2}}=1044 \Omega \quad$ 5) $\varphi=-\tan ^{-1}\left(\frac{796-126}{800}\right)=-40^{\circ}$

$$
I=100 / 1044=96 \mathrm{~mA}
$$

Voltage lags current by 40°
Current leads voltage by 40°

EXAMPLE: MORE COMPLICATED CIRCUIT

Known parameters: e, frequency, R_{1}, R_{2}, L, C.
Determine: current, phase angle
STEP 1
Analysis of the $R_{1} C$ segment

$$
Z_{1}=R_{1}-\frac{j}{\omega C}
$$

STEP 2

Analysis of the $R_{2} L$ segment

$$
z_{2}=R_{2}+j \omega L
$$

STEP 3

Analysis of the whole circuit

$$
\frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}
$$

STEP 4

Current

$$
I=\frac{\varepsilon}{|Z|}
$$

Phase angle

$$
Z=R+X j
$$

$$
\varphi=\tan ^{-1} \frac{X}{R}
$$

Note

You can make calculations with complex numbers using MATLAB

However, you also need some practice using only a pocket calculator!

