OneStopGate.Com
OnestopGate   OnestopGate
   Saturday, April 20, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Instrumentation Engineering » Laplace Transform

Laplace Transform

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Laplace Transform

Laplace Transform

The Laplace transform is an integral transform perhaps second only to the Fourier transform in its utility in solving physical problems. The Laplace transform is particularly useful in solving linear ordinary differential equations such as those arising in the analysis of electronic circuits.

The (unilateral) Laplace transform L (not to be confused with the Lie derivative, also commonly denoted L) is defined by

 L_t[f(t)](s)=int_0^inftyf(t)e^(-st)dt,
(1)

where f(t) is defined for t>=0 (Abramowitz and Stegun 1972). The unilateral Laplace transform is almost always what is meant by "the" Laplace transform, although a bilateral Laplace transformm is sometimes also defined as

 L_t^((2))[f(t)](s)=int_(-infty)^inftyf(t)e^(-st)dt
(2)

(Oppenheim et al. 1997). The unilateral Laplace transform L_t[f(t)](s) is implemented in Mathematica as LaplaceTransform[f[t], t, s].

The inverse Laplace transform is known as the Bromwich integral, sometimes known as the Fourier-Mellin integral (see also the related Duhamel's convolution principle).

A table of several important one-sided Laplace transforms is given below.

f L_t[f(t)](s) conditionss
1 1/s
t 1/(s^2)
t^n (n!)/(s^(n+1)) n in Z>=0
t^a (Gamma(a+1))/(s^(a+1)) R[a]>-1
e^(at) 1/(s-a)
cos(omegat) s/(s^2+omega^2) omega in R
sin(omegat) a/(s^2+omega^2) s>|I[omega]|
cosh(omegat) s/(s^2-omega^2) s>|R[omega]|
sinh(omegat) a/(s^2-omega^2) s>|I[omega]|
e^(at)sin(bt) b/((s-a)^2+b^2) s>a+|I[b]|
e^(at)cos(bt) (s-a)/((s-a)^2+b^2) b in R
delta(t-c) e^(-cs)
H_c(t) {1/s   for c<=0; (e^(-cs))/s   for c>0
J_0(t) 1/(sqrt(s^2+1))
J_n(at) ((sqrt(s^2+a^2)-s)^n)/(a^nsqrt(s^2+a^2)) n in Z>=0

In the above table, J_0(t) is the zeroth-order Bessel function of the first kind, delta(t) is the delta function, and H_c(t) is the Heaviside step function.

The Laplace transform has many important properties. The Laplace transform existence theorem states that, if f(t) is piecewise continuous on every finite interval in [0,infty) satisfying

 |f(t)|<=Me^(at)
(3)

for all t in [0,infty), then L_t[f(t)](s) exists for all s>a. The Laplace transform is also unique, in the sense that, given two functions F_1(t) and F_2(t) with the same transform so that

 L_t[F_1(t)](s)=L_t[F_2(t)](s)=f(s),
(4)

then Lerch's theorem guarantees that the integral

 int_0^aN(t)dt=0
(5)

vanishes for all a>0 for a null function defined by

 N(t)=F_1(t)-F_2(t).
(6)

The Laplace transform is linear since

L_t[af(t)+bg(t)] = int_0^infty[af(t)+bg(t)]e^(-st)dt
(7)
= aint_0^inftyfe^(-st)dt+bint_0^inftyge^(-st)dt
(8)
= aL_t[f(t)]+bL_t[g(t)].
(9)

The Laplace transform of a convolution is given by

L_t[f(t)*g(t)]=L_t[f(t)]L_t[g(t)]
(10)
L_t^(-1)[FG]=L_t^(-1)[F]*L_t^(-1)[G].
(11)

Now consider differentiation. Let f(t) be continuously differentiable n-1 times in [0,infty). If |f(t)|<=Me^(at), then

 L_t[f^((n))(t)](s)=s^nL_t[f(t)]-s^(n-1)f(0)-s^(n-2)f^'(0)-...-f^((n-1))(0).
(12)

This can be proved by integration by parts,

L_t[f^'(t)](s) = lim_(a->infty)int_0^ae^(-st)f^'(t)dt
(13)
= lim_(a->infty){[e^(-st)f(t)]_0^a+sint_0^ae^(-st)f(t)dt}
(14)
(15)
= lim_(a->infty)[e^(-sa)f(a)-f(0)+sint_0^ae^(-st)f(t)dt]
(16)
(17)
= sL_t[f(t)]-f(0).
(18)

Continuing for higher-order derivatives then gives

 L_t[f^('')(t)](s)=s^2L_t[f(t)](s)-sf(0)-f^'(0).
(19)

This property can be used to transform differential equations into algebraic equations, a procedure known as the Heaviside calculus, which can then be inverse transformed to obtain the solution. For example, applying the Laplace transform to the equation

 f^('')(t)+a_1f^'(t)+a_0f(t)=0
(20)

gives

 {s^2L_t[f(t)](s)-sf(0)-f^'(0)}+a_1{sL_t[f(t)](s)-f(0)}+a_0L_t[f(t)](s)=0
(21)
 L_t[f(t)](s)(s^2+a_1s+a_0)-sf(0)-f^'(0)-a_1f(0)=0,
(22)

which can be rearranged to

 L_t[f(t)](s)=(sf(0)+f^'(0)+a_1f(0))/(s^2+a_1s+a_0).
(23)

If this equation can be inverse Laplace transformed, then the original differential equation is solved.

The Laplace transform satisfied a number of useful properties. Consider exponentiation. If L_t[f(t)](s)=F(s) for s>alpha (i.e., F(s) is the Laplace transform of f), then L_t[e^(at)f](s)=F(s-a) for s>a+alpha. This follows from

F(s-a) = int_0^inftyfe^(-(s-a)t)dt
(24)
= int_0^infty[f(t)e^(at)]e^(-st)dt
(25)
= L_t[e^(at)f(t)](s).
(26)

The Laplace transform also has nice properties when applied to integrals of functions. If f(t) is piecewise continuous and |f(t)|<=Me^(at), then

 L_t[int_0^tf(t^')dt^']=1/sL_t[f(t)](s).
(27)



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari