OneStopGate.Com
OnestopGate   OnestopGate
   Friday, May 10, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Interpolation and Polynomial Approximation » The Tangent Parabola

The Tangent Parabola

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

The Tangent Parabola

The Tangent Parabola
by
John H. Mathews
Russell W. Howell
The AMATYC Review, Vol. 23, No. 1, Fall 2001, pp. 25-32.

Background  

    The limit of "the secant line" is "the tangent line."  We recast this in the context of polynomial approximation.  The secant line is the Newton polynomial  [Graphics:Images/TangentParabolaMod_gr_1.gif],  and the tangent line as the Taylor polynomial  [Graphics:Images/TangentParabolaMod_gr_2.gif],  where each has degree  [Graphics:Images/TangentParabolaMod_gr_3.gif].    

The Newton polynomial  [Graphics:Images/TangentParabolaMod_gr_4.gif],  has the form:


(i)        [Graphics:Images/TangentParabolaMod_gr_5.gif].

The coefficients [Graphics:Images/TangentParabolaMod_gr_6.gif] and [Graphics:Images/TangentParabolaMod_gr_7.gif] are determined by forcing  [Graphics:Images/TangentParabolaMod_gr_8.gif]  to pass through two points  [Graphics:Images/TangentParabolaMod_gr_9.gif] and [Graphics:Images/TangentParabolaMod_gr_10.gif].  Here we have used the notation  [Graphics:Images/TangentParabolaMod_gr_11.gif] for the second point.  
                    
Using the equation  [Graphics:Images/TangentParabolaMod_gr_12.gif]  and the two points produces a lower-triangular linear system of equations:

        [Graphics:Images/TangentParabolaMod_gr_13.gif]  

which simplifies to be

(ii)        [Graphics:Images/TangentParabolaMod_gr_14.gif]  

which is easily solved using forward elimination:  [Graphics:Images/TangentParabolaMod_gr_15.gif],  and  [Graphics:Images/TangentParabolaMod_gr_16.gif].  Substitute  [Graphics:Images/TangentParabolaMod_gr_17.gif] and [Graphics:Images/TangentParabolaMod_gr_18.gif] into equation (i) and get

(iii)        [Graphics:Images/TangentParabolaMod_gr_19.gif]

     As h approaches 0 in equation (iii), the limit of the difference quotient  [Graphics:Images/TangentParabolaMod_gr_20.gif]  is the derivative  [Graphics:Images/TangentParabolaMod_gr_21.gif]  and the limit of the Newton Polynomial  [Graphics:Images/TangentParabolaMod_gr_22.gif]  is seen to be the Taylor polynomial  [Graphics:Images/TangentParabolaMod_gr_23.gif]:

        [Graphics:Images/TangentParabolaMod_gr_24.gif].  

This background is the motivation to investigate the idea of polynomial approximations and their limits.

    The secant line which is used to approximate  [Graphics:Images/TangentParabolaMod_gr_25.gif]  it is based on two points [Graphics:Images/TangentParabolaMod_gr_26.gif] and [Graphics:Images/TangentParabolaMod_gr_27.gif].  What if we used three points?  Then we could determine a polynomial of degree [Graphics:Images/TangentParabolaMod_gr_28.gif], which could also be used to approximate  [Graphics:Images/TangentParabolaMod_gr_29.gif].  Thus, we have the concept of  "the secant parabola" with interpolation points [Graphics:Images/TangentParabolaMod_gr_30.gif], [Graphics:Images/TangentParabolaMod_gr_31.gif], and [Graphics:Images/TangentParabolaMod_gr_32.gif].  

        

[Graphics:Images/TangentParabolaMod_gr_33.gif]

  
        Figure 1. The secant parabola approximating  [Graphics:Images/TangentParabolaMod_gr_34.gif],  at  [Graphics:Images/TangentParabolaMod_gr_35.gif]  using  [Graphics:Images/TangentParabolaMod_gr_36.gif]

When the interpolation points are moved closer to the middle point  [Graphics:Images/TangentParabolaMod_gr_37.gif] the "the secant parabola" approaches a limiting position.

        

[Graphics:Images/TangentParabolaMod_gr_38.gif]

  

        Figure 2. The secant parabola approximating  [Graphics:Images/TangentParabolaMod_gr_39.gif],  at  [Graphics:Images/TangentParabolaMod_gr_40.gif]  using  [Graphics:Images/TangentParabolaMod_gr_41.gif]

The limiting position of the secant parabola is called the "tangent parabola."  The following figure shows this case when h goes to 0 and all three nodes coincide.

        

[Graphics:Images/TangentParabolaMod_gr_42.gif]

  
        Figure 3. The tangent parabola approximating  [Graphics:Images/TangentParabolaMod_gr_43.gif],  at  [Graphics:Images/TangentParabolaMod_gr_44.gif]  where  [Graphics:Images/TangentParabolaMod_gr_45.gif].  


Can you guess what the tangent parabola will turn out to be?  We will reveal this pleasant surprise at the end of the article.

The Secant Parabola     

    A precise discussion of "the secant parabola" is now presented.  Recall that a polynomial of degree  [Graphics:Images/TangentParabolaMod_gr_46.gif]  expanded about  [Graphics:Images/TangentParabolaMod_gr_47.gif]  can be written in the form

(1)        [Graphics:Images/TangentParabolaMod_gr_48.gif],  

where the coefficients [Graphics:Images/TangentParabolaMod_gr_49.gif] are to be determined.  Since  [Graphics:Images/TangentParabolaMod_gr_50.gif]  is to be the interpolating polynomial for  [Graphics:Images/TangentParabolaMod_gr_51.gif] , it must pass through the three points  [Graphics:Images/TangentParabolaMod_gr_52.gif], [Graphics:Images/TangentParabolaMod_gr_53.gif], and [Graphics:Images/TangentParabolaMod_gr_54.gif].  Using the first point [Graphics:Images/TangentParabolaMod_gr_55.gif] we obtain the relation  

        [Graphics:Images/TangentParabolaMod_gr_56.gif],  

which implies that
    
        [Graphics:Images/TangentParabolaMod_gr_57.gif].   

Proceeding, we solve for the two coefficients [Graphics:Images/TangentParabolaMod_gr_58.gif] by first making the substitution [Graphics:Images/TangentParabolaMod_gr_59.gif] in equation (1) and writing

(2)        [Graphics:Images/TangentParabolaMod_gr_60.gif].    


Then make substitutions for the two points [Graphics:Images/TangentParabolaMod_gr_61.gif], and [Graphics:Images/TangentParabolaMod_gr_62.gif], respectively,  in equation (2) and obtain two relations

        [Graphics:Images/TangentParabolaMod_gr_63.gif]  
    and  
        [Graphics:Images/TangentParabolaMod_gr_64.gif].  

Simplification  produces the following two equations which will be used to solve for [Graphics:Images/TangentParabolaMod_gr_65.gif].

        [Graphics:Images/TangentParabolaMod_gr_66.gif],  
(3)  
        [Graphics:Images/TangentParabolaMod_gr_67.gif].  

Subtract the first equation in (3) from the second and then divide by  2h  and get  

        [Graphics:Images/TangentParabolaMod_gr_68.gif].

Add the equations in (3), subtract [Graphics:Images/TangentParabolaMod_gr_69.gif] and then divide by [Graphics:Images/TangentParabolaMod_gr_70.gif] and get

        [Graphics:Images/TangentParabolaMod_gr_71.gif].

The Secant Parabola Formula

    The secant parabola for [Graphics:Images/TangentParabolaMod_gr_72.gif] which passes through [Graphics:Images/TangentParabolaMod_gr_73.gif], [Graphics:Images/TangentParabolaMod_gr_74.gif], and [Graphics:Images/TangentParabolaMod_gr_75.gif] involves the variable x and parameters [Graphics:Images/TangentParabolaMod_gr_76.gif] and has the form

(4)        [Graphics:Images/TangentParabolaMod_gr_77.gif][Graphics:Images/TangentParabolaMod_gr_78.gif][Graphics:Images/TangentParabolaMod_gr_79.gif].  

 

A Numerical Experiment

    Formulas for the above graphs of the secant parabola  [Graphics:Images/TangentParabolaMod_gr_80.gif] for  [Graphics:Images/TangentParabolaMod_gr_81.gif] are constructed using formula (4).  The computations are centered at the point [Graphics:Images/TangentParabolaMod_gr_82.gif] using the step sizes  [Graphics:Images/TangentParabolaMod_gr_83.gif].

 

Finding the Limit Numerically

    The limit of the secant polynomials is found by evaluating formula (4) using decreasing step sizes  [Graphics:Images/TangentParabolaMod_gr_118.gif].
The numerical results are summarized in Table 1.  

        [Graphics:Images/TangentParabolaMod_gr_119.gif]
        
        Table 1. The secant parabola approximating  [Graphics:Images/TangentParabolaMod_gr_120.gif],  at  [Graphics:Images/TangentParabolaMod_gr_121.gif]  where [Graphics:Images/TangentParabolaMod_gr_122.gif].  
 

 

Finding the Limit Symbolically

    The entries in the table show that the coefficients of  [Graphics:Images/TangentParabolaMod_gr_125.gif]  are tending to a limit as  [Graphics:Images/TangentParabolaMod_gr_126.gif].  Thus the "tangent parabola" is  

(5)          [Graphics:Images/TangentParabolaMod_gr_127.gif][Graphics:Images/TangentParabolaMod_gr_128.gif][Graphics:Images/TangentParabolaMod_gr_129.gif].  

The first limit in (5) is well known, it is  

        [Graphics:Images/TangentParabolaMod_gr_130.gif].

The second limit in (5) is studied in numerical analysis, and is known to be [Graphics:Images/TangentParabolaMod_gr_131.gif], which can be verified by applying L'hopital's rule using the variable h as follows

        [Graphics:Images/TangentParabolaMod_gr_132.gif][Graphics:Images/TangentParabolaMod_gr_133.gif] [Graphics:Images/TangentParabolaMod_gr_134.gif][Graphics:Images/TangentParabolaMod_gr_135.gif].  
 

 

Therefore, we have shown the limit of the "secant parabolas" to be

(6)        [Graphics:Images/TangentParabolaMod_gr_138.gif][Graphics:Images/TangentParabolaMod_gr_139.gif][Graphics:Images/TangentParabolaMod_gr_140.gif].  

Therefore, the "tangent parabola" in (5) is revealed to be the Taylor polynomial of degree [Graphics:Images/TangentParabolaMod_gr_141.gif].  
 

 

For our example with  [Graphics:Images/TangentParabolaMod_gr_151.gif],  and  [Graphics:Images/TangentParabolaMod_gr_152.gif],  we have

        [Graphics:Images/TangentParabolaMod_gr_153.gif][Graphics:Images/TangentParabolaMod_gr_154.gif][Graphics:Images/TangentParabolaMod_gr_155.gif]  
    
        [Graphics:Images/TangentParabolaMod_gr_156.gif][Graphics:Images/TangentParabolaMod_gr_157.gif][Graphics:Images/TangentParabolaMod_gr_158.gif]  
 

 

The Lagrange Connection

    In numerical analysis, the Lagrange interpolation polynomial is constructed, and it can be shown to be equivalent to the formula in (4), however the hand computations are messy.  If a computer algebra system, such as Mathematica is used, then it is easy to verify that the two forms are equivalent.  First, enter the formula for the Lagrange polynomial

[Graphics:Images/TangentParabolaMod_gr_161.gif]

Then enter formula (4)

[Graphics:Images/TangentParabolaMod_gr_162.gif]

The above two formulas can be expanded and shown to be equal.
 

Therefore, formula (4) is equivalent to Lagrange interpolation, hence the Lagrange form of the remainder applies too.

 

The Remainder Term

    In numerical analysis, the remainder term for a Lagrange interpolation polynomial of degree  [Graphics:Images/TangentParabolaMod_gr_170.gif],  is known to be

        [Graphics:Images/TangentParabolaMod_gr_171.gif],

where [Graphics:Images/TangentParabolaMod_gr_172.gif] depends on [Graphics:Images/TangentParabolaMod_gr_173.gif] and lies somewhere between  [Graphics:Images/TangentParabolaMod_gr_174.gif].  

    When we take the limit of   [Graphics:Images/TangentParabolaMod_gr_175.gif]  as  [Graphics:Images/TangentParabolaMod_gr_176.gif]  it is plain to see that we get

        [Graphics:Images/TangentParabolaMod_gr_177.gif],

which is the remainder term for the Taylor polynomial of degree  [Graphics:Images/TangentParabolaMod_gr_178.gif].  This cinches the fact that the limit of the secant polynomial is the tangent polynomial.

 

Conclusion

    The purpose of this article has been to show that the Taylor polynomial is the limiting case of a sequence of interpolating polynomials.  The development has been to first show graphical convergence, which is quite rapid.  This can be illustrated in the classroom by using graphical calculators or with computer software such as Mathematica or Maple.  Then a selected set of interpolating polynomials is tabulated, which is a new twist to the idea of limit, it involves the concept of convergence of a sequence of functions.   Finally, the power of calculus is illustrated by discovering that the limiting coefficients are [Graphics:Images/TangentParabolaMod_gr_179.gif] and [Graphics:Images/TangentParabolaMod_gr_180.gif].  Then one recognizes that the "tangent polynomial" is a Taylor polynomial approximation.  Moreover, we have motivated the "what if" exploration by showing what happens to "the secant parabola" with interpolation points [Graphics:Images/TangentParabolaMod_gr_181.gif], [Graphics:Images/TangentParabolaMod_gr_182.gif], and [Graphics:Images/TangentParabolaMod_gr_183.gif] when the points "collide" at the single point [Graphics:Images/TangentParabolaMod_gr_184.gif].  Thus the mystery behind the Taylor polynomial being based on a single point is revealed.  It is hoped that teachers reading this article will gain insight to how to use technology in teaching mathematics.  Higher degree polynomials have been investigated by the authors in the article "Investigation of Tangent Polynomials with a Computer Algebra System ", and some of the ideas are given below.

 

The Tangent Cubic Polynomial

    A natural question to ask now is: "What about polynomial approximation of higher degrees?"  Exploration of the Newton polynomials involves complicated symbolic manipulations and is prone to error when carried out with hand computations.  These derivations can become instructive and enjoyable when they are performed with computer algebra software.  Let
[Graphics:Images/TangentParabolaMod_gr_185.gif] be the Newton polynomial that passes through the four points  [Graphics:Images/TangentParabolaMod_gr_186.gif]  for  [Graphics:Images/TangentParabolaMod_gr_187.gif].  It may be shown that the Taylor polynomial [Graphics:Images/TangentParabolaMod_gr_188.gif] is the limit of  [Graphics:Images/TangentParabolaMod_gr_189.gif]  as  [Graphics:Images/TangentParabolaMod_gr_190.gif].  We shall use the power of Mathematica to assist us with this derivation.  Begin by setting  [Graphics:Images/TangentParabolaMod_gr_191.gif]  equal to the general form of a Newton polynomial of degree n by issuing the following Mathematica commands:

[Graphics:Images/TangentParabolaMod_gr_192.gif]


[Graphics:Images/TangentParabolaMod_gr_193.gif]

Now form the set of four equations that force the polynomial to pass through the four equally-spaced points.  Notice that this is a lower-triangular system of linear equations.

[Graphics:Images/TangentParabolaMod_gr_194.gif]


[Graphics:Images/TangentParabolaMod_gr_195.gif]

 

Then solve this lower triangular linear system, and construct the polynomial  [Graphics:Images/TangentParabolaMod_gr_196.gif],  and store it as the function  [Graphics:Images/TangentParabolaMod_gr_197.gif].  

[Graphics:Images/TangentParabolaMod_gr_198.gif]



[Graphics:Images/TangentParabolaMod_gr_199.gif]

Finally, compute the limit to verify that our conjecture was correct:

[Graphics:Images/TangentParabolaMod_gr_200.gif]


[Graphics:Images/TangentParabolaMod_gr_201.gif]

Eureka!  The limiting case of  [Graphics:Images/TangentParabolaMod_gr_202.gif]  as  [Graphics:Images/TangentParabolaMod_gr_203.gif]  is the Taylor polynomial [Graphics:Images/TangentParabolaMod_gr_204.gif].  Observe that the option  [Graphics:Images/TangentParabolaMod_gr_205.gif]  must be used in Mathematica's limit procedure.  This is a mathematicians way to tell the computer that  [Graphics:Images/TangentParabolaMod_gr_206.gif]  is "sufficiently differentiable."

 

Tangent Polynomials of Higher Degree

    Consider the seven points
[Graphics:Images/TangentParabolaMod_gr_242.gif]  for  [Graphics:Images/TangentParabolaMod_gr_243.gif].  We can construct the Newton polynomial of degree 6 and take the limit to obtain the Taylor polynomial.

[Graphics:Images/TangentParabolaMod_gr_244.gif]



[Graphics:Images/TangentParabolaMod_gr_245.gif]

Now form the set of seven equations that force the polynomial to pass through the four equally-spaced points.  

[Graphics:Images/TangentParabolaMod_gr_246.gif]


[Graphics:Images/TangentParabolaMod_gr_247.gif]

 

 

Then solve this lower triangular system, and construct the polynomial  [Graphics:Images/TangentParabolaMod_gr_248.gif],  and store it as the function  [Graphics:Images/TangentParabolaMod_gr_249.gif].  

[Graphics:Images/TangentParabolaMod_gr_250.gif]



[Graphics:Images/TangentParabolaMod_gr_251.gif]

Finally, compute the limit and see that it is the Taylor polynomial.

[Graphics:Images/TangentParabolaMod_gr_252.gif]



[Graphics:Images/TangentParabolaMod_gr_253.gif]




Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari